

Les nombres (ou coefficients) stoechiométriques indiquent les **proportions** dans lesquelles vont réagir les réactifs et dans lesquelles vont se former les produits. Une équation traduit donc un **bilan de quantité de matière** (c'est-à-dire un bilan exprimé en nombre de **moles**).

Pour une équation du type « $aA + bB \rightarrow cC + dD$ », on peut donc dire que :

« a moles de A réagissent avec b moles de B pour former c moles de C et d moles de D ».

Par exemple pour l'équation modélisant la réaction entre le dihydrogène H_2 et le dioxygène O_2 :

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

Le bilan de quantité de matière s'énonce : « 2 moles de H_2 réagissent avec 1 mole de O_2 pour former 2 moles de H_2O »

On dit que le **mélange réactionnel** est **stoechiométrique** si les quantités de matière initiales des réactifs sont introduites dans les proportions stoechiométriques. Les deux réactifs sont alors entièrement consommés.

Par exemple si on introduit 4 moles de H_2 et 2 moles de O_2 , alors le mélange réactionnel est stoechiométrique. A la fin de la réaction il ne restera plus de H_2 ni de O_2 .

Dans le cas contraire, l'un des deux réactifs est **en excès**, et l'autre est appelé « **réactif limitant** » ; seul ce dernier est entièrement consommé.

Par exemple si on introduit 2 moles de H_2 et 2 moles de O_2 , alors le mélange réactionnel n'est pas stoechiométrique.

Il y a en effet alors trop de O_2 et pas assez de H_2 (car il en faudrait 4 moles au lieu de 2) :

- O_2 est donc le réactif en excès
- $^ H_2$ est donc le réactif limitant ; il sera entièrement consommé.

Formalisme

Si on note « $n_0(A)$ » et « $n_0(B)$ » les **quantités de matière initiales des** réactifs, on peut déterminer si le mélange réactionnel est stoechiométrique ou non en calculant les deux rapports :

$$\frac{n_0(A)}{a}$$

et

$$\frac{n_0(B)}{b}$$

- si
$$\frac{n_0(A)}{a} = \frac{n_0(B)}{b}$$
 alors le mélange réactionnel est **stoechiométrique**.

$$- \ \, \mathrm{si} \, \frac{n_0(A)}{a} > \frac{n_0(B)}{b} \quad \text{alors A est en excès et B est le réactif limitant.} \\ \quad _{Le\ m\'elange\ r\'eactionnel\ n'est\ pas\ stoechiom\'etrique.}$$

$$- \ \, \text{si} \, \frac{n_0(A)}{a} < \frac{n_0(B)}{b} \quad \text{alors A est le réactif limitant et B est en excès.} \\ \text{Le mélange réactionnel n'est pas stoechiométrique.}$$

Par exemple, toujours pour l'équation $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$:

Si
$$n_0(H_2) = 4 \, mol \, \text{et} \, n_0(O_2) = 2 \, mol$$

Alors:

$$\frac{n_0(H_2)}{2} = \frac{4 \, m \, o \, l}{2} = 2 \, m \, o \, l$$

$$\frac{n_0(O_2)}{1} = \frac{2 \, m \, ol}{1} = 2 \, m \, ol$$

On conclut que :
$$\frac{n_0(H_2)}{2} = \frac{n_0(O_2)}{1}$$

Le mélange réactionnel est donc stoechiométrique.

Si
$$n_0(H_2) = 2 \, mol \, \text{et} \, n_0(O_2) = 2 \, mol$$

Alors:

$$\frac{n_0(H_2)}{2} = \frac{2\,mol}{2} = 1\,mol$$

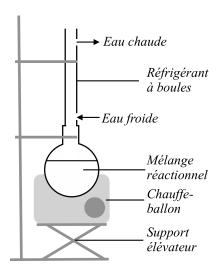
$$\frac{n_0(O_2)}{1} = \frac{2 \, m \, o \, l}{1} = 2 \, m \, o \, l$$

On conclut que :
$$\frac{n_0(H_2)}{2} < \frac{n_0(O_2)}{1}$$

Le mélange réactionnel n'est donc pas stoechiométrique :

- H_2 est le réactif limitant.
- O_2 est le réactif en excès

Synthèses


En chimie, on appelle « synthèse » la **fabrication d'une espèce chimique** au laboratoire. Cette espèce peut déjà exister dans la nature, et l'espèce synthétisée est alors une espèce **naturelle**. Sinon, il s'agit d'une espèce **synthétique**.

Une synthèse s'effectue généralement en quatre étapes :

- étape 1 : prélèvement et transformation des réactifs
- étape 2 : isolement du produit brut par filtration ou par extraction
- étape 3 : purification du produit par recristallisation ou par distillation fractionnée
- étape 4 : analyse du produit par CCM par mesure de la température de fusion ou par spectroscopie InfraRouge.

Au cours de l'étape de transformation des réactifs, on utilise souvent un montage à reflux qui permet d'augmenter la température du mélange réactionnel (ce qui a pour effet d'accélérer la transformation) à l'aide d'un chauffe-ballon, tout en liquéfiant les vapeurs à l'aide d'un réfrigérant à boules (alimenté en eau froide) évitant ainsi les pertes de matière à l'état gazeux.

On ajoute souvent des pierres ponce afin d'homogénéiser le mélange réactionnel et faciliter le contact entre les réactifs.

Le support élévateur permet de pouvoir éloigner rapidement la source de chaleur en cas de problème.