

L'avancement, qui a pour symbole « x » et s'exprime en mole, permet de décrire l'évolution d'un système chimique. Il est égal à la quantité de matière de réactif consommé ou de produit qui se forme dans le cas d'une espèce chimique dont le nombre stoechiométrique est égal à 1. Les autres quantités de matières seront déterminées par proportionnalité.

Par exemple, l'équation « $CH_4(g)+2$ $O_2(g)\to CO_2(g)+2$ $H_2O(g)$ » indique que « 1 mole de CH_4 réagit avec 2 moles de O_2 ; il se forme 1 mole de CO_2 et 2 moles de H_2O ».

Le nombre stœchiométrique de CH_4 étant égal à 1, alors la quantité de matière qui réagit est égale à l'avancement « x » ; ainsi :

Quantités de matière qui réagissent		Quantités de matie	ère qui se forment
$n(CH_4)$	$n(O_2)$	$n(CO_2)$	$n(H_20)$
1 mol	2mol	1mol	2mol
X	2 x	X	2 x

• Composition finale du système

L'avancement varie de 0 à **l'état initial** jusqu'à la valeur notée « x_F » à **l'état final**. Pour déterminer la composition finale du système, il suffit d'exprimer les quantités de matière finales « n_F » des réactifs et des produits, donc lorsque $x=x_F$.

➤ Pour les **réactifs**, on doit **soustraire** la quantité de matière qui a réagi à la quantité de matière initiale. Pour les **produits**, on doit **ajouter** la quantité de matière qui se forme à la quantité de matière initiale, qui est très souvent nulle.

Réactifs :
$$n_F(CH_4) = n_0(CH_4) - x_F$$
 $n_F(O_2) = n_0(O_2) - 2x_F$

Produits:
$$n_F(CO_2) = x_F$$
 $n_F(H_2O) = 2 x_F$

Tableau d'avancement

Il permet de faire apparaître au même endroit la composition initiale et la composition finale du système. Les cases contiennent toutes des quantités de matière.

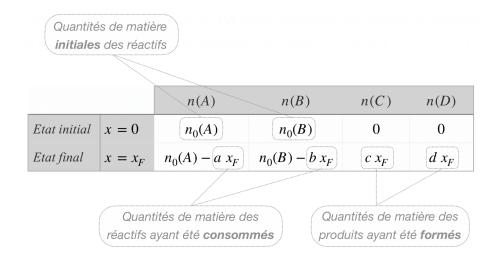
	$n(CH_4)$	$n(O_2)$	$n(CO_2)$	$n(H_20)$
Etat initial; $x = 0$	$n_0(CH_4)$	$n_0(O_2)$	0	0
Etat final; $x = x_F$	$n_0(CH_4) - x_F$	$n_0(O_2) - 2 x_F$	x_F	$2 x_F$

On peut ajouter une ligne « état intermédiaire » :

Etat intermédiaire	$n_0(CH_4) - x$	$n_0(O_2) - 2x$	X	2 <i>x</i>	
--------------------	-----------------	-----------------	---	------------	--

Avancement maximal

Lorsqu'une transformation est totale (ce qui est symbolisé par « \rightarrow » dans l'équation), l'avancement final atteint une valeur maximale notée « x_{max} ».


Lorsque $x_F = x_{max}$ la quantité de matière finale du **réactif limitant** est nulle.

ightharpoonup Pour calculer la valeur de x_{max} , il suffit donc d'annuler la quantité de matière finale du réactif limitant. Par exemple si O_2 est le réactif limitant, alors :

$$n_0(O_2) - 2 x_{max} = 0$$
 $\iff x_{max} = \frac{n_0(O_2)}{2}$

Formalisme

Dans le cas général d'une équation du type « $aA + bB \rightarrow cC + dD$ »

$$x_{max} = \frac{n_0(A)}{a}$$
 si A est le réactif limitant $x_{max} = \frac{n_0(B)}{b}$ si B est le réactif limitant.

➤ Si on ne connaît par le réactif limitant, alors on peut l'identifier en comparant les rapports $\frac{n_0(A)}{a}$ et $\frac{n_0(B)}{b}$: le plus faible des deux est celui associé au réactif limitant.

On peut également calculer x_{max} sans connaître le réactif limitant : on calcule alors sa valeur dans l'hypothèse où A est le réactif limitant (en annulant sa quantité de matière finale), puis dans l'hypothèse où le réactif B est le réactif limitant, puis on conserve la valeur la plus faible de x_{max}